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Abstract
Biofilms are complex communities of bacteria that exhibit a variety of collective behav-
iors. These behaviors improve their ability to survive in many different environments.
One of these collective behaviors seen in Bacillus subtilis is the ability for starving
cells to stop the growth of other cells using potassium signaling and voltage changes.
This signaling produces an oscillatory growth pattern so that during periods of low
growth the nutrients diffuse deeper into the biofilm and reach the nutrient-starved,
interior regions of the biomass. In this paper, we develop a mathematical model to
describe this oscillatory behavior, and we use this model to develop a two-dimensional
simulation that reproduces many of the important features seen in the experimental
data. This simulation allows us to examine the spatial patterning of the oscillatory
behavior to better understand the relationships between the various regions of the
biofilm. Studying the spatial components of the metabolic and voltage oscillations
could allow for the development of new control techniques for biofilms with complex
shapes.
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1 Introduction

Biofilms are collections of bacteria that grow on surfaces, which can significantly
impact engineered systems and human health. For example, biofilms play a role in
many infections in humans (Costerton et al. (1999); Parsek andSingh (2003)). Biofilms
exhibit several unique, collective behaviors that improve the bacteria’s ability to sur-
vive in a variety of environments. Some known, collective behaviors include symbiotic
relationships between multiple species within a biofilm and the development of phys-
ical channels between cells to facilitate nutrient penetration and distribution. More
information on these well-studied, collective behaviors can be found in Costerton
(2007). In this paper, we explore an oscillatory growth pattern that emerges from
potassium signaling in some biofilms of Bacillus subtilis. These oscillations were first
reported in Jintao et al. (2015) and in Prindle et al. (2015) as another mechanism for
cooperation within a biofilm that may improve their ability to survive and grow in cer-
tain environments. By studying this oscillatory mechanism, we may be able to better
understand certain pathogenic biofilm infections and find new ways to fight them.

The bacteria in these biofilms depend on limited nutrients from the fluid in order
to survive. As a biofilm grows larger, cells near the interior often become starved for
nutrients that must travel farther through active biomass to reach them. If the cells near
the periphery of the biofilm continue to grow at the same rate, the cells near the center
of the biofilm could die from starvation. A high level of cell death near the center
of a biofilm could destabilize the biofilm and adversely affect the peripheral cells’
survival. This conflict between the growth of cells near the biofilm interface and the
maintenance of the interior cells is discussed in Jintao et al. (2015). In the experiments
in Prindle et al. (2015) the primary nutrient is glutamate, which is a nitrogen source
that cells use for both growth and maintenance. As shown in Prindle et al. (2015), the
electrochemical signaling is driven by the cellular release and uptake of potassium, a
positive ion that the cells use to regulate their voltage differential. When cells become
metabolically stressed, they release potassium and hyperpolarize as shown in Prindle
et al. (2015). This release of potassium causes neighboring cells to uptake potassium
and briefly depolarize, which interferes with their metabolic processes. Once these
neighboring cells become stressed, they also release potassium and hyperpolarize,
as shown experimentally in Prindle et al. (2015). Collectively, the cells generate a
potassium wave that travels from the nutrient-starved interior to the exterior of the
biofilm. This wave disrupts the entire biofilm’s nutrient consumption. The disruption
in consumption allows nutrients to diffuse past the periphery toward the starving
interior cells allowing the biofilm to maintain a moderated growth rate while avoiding
a destabilizing level of cell death in its interior, as explained in Jintao et al. (2015).

Previous work using one-dimensional models also suggests that the oscillations
arise from metabolic stress and propagate through changes in potassium, as demon-
strated by the model introduced in Martinez-Corral et al. (2019). In this paper, we
build on this metabolic propagation mechanism by introducing a new method of cell-
to-cell communication in which the cells react to changing potassium levels instead
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of the absolute potassium level. This model is consistent with the observation that
bacteria can adjust to living in environments that possess a range of potassium con-
centrations. B. subtilis appears to use multiple types of transporters to maintain a
homeostatic, internal potassium concentration, and the expression of each transporter
allows the bacteria to grow at different potassium concentrations ( Gundlach et al.
(2017)). While we do not have data that quantifies the cells’ ability to adjust to various
potassium concentrations, we fit by hand a linear differential equation that represents
this assumption. We use this set of equations to develop a two-dimensional model
to more accurately represent the experiments in Prindle et al. (2015) and to study
variations in the oscillation patterns seen in these experiments. This model is useful
in studying multi-dimensional phenomena that appear within biofilm systems such as
the communication between separated biofilms.

2 One-Dimensional Model

Wefirst develop a one-dimensional model that represents a cross section of the biofilm
and is based on the continuum model developed in Wanner and Gujer (1986). The
model relies on cellular metabolism to initiate and propagate the signal. These oscil-
lations have been linked to metabolism in previous research, such as in Jintao et al.
(2015) and in Liu et al. (2017). A biofilm begins to oscillate at a smaller size in envi-
ronments with lower ambient glutamate as shown in Martinez-Corral et al. (2019).
This result suggests that there is a glutamate threshold under which the cells become
stressed and hyperpolarize. Metabolism also plays an important role in the one- and
two-dimensional model we develop in this paper.

In developing our model, we consider a model proposed by Martinez-Corral et al.
(2019) that is able to replicate much of the behavior that we see in experiments. The
main differences between the model fromMartinez-Corral et al. (2019) and the model
introduced here is that we change the cells’ response to extracellular potassium, we
simplify the boundary condition, and we more closely tie together the equations for
voltage and potassium, specifically for the processes of potassium leakage and potas-
sium uptake. We find that this updated model better captures the inverse relationship
between the voltage and the extracellular potassium seen in experiments from Prindle
et al. (2015).

We first consider how a rise in the external potassium concentration can affect the
metabolism of a cell. We assume that a rise in environmental potassium causes potas-
sium to leak into the bacteria, thereby depolarizing the cell and affecting its glutamate
consumption. While there are a few ways through which voltage changes can affect
consumption, Martinez-Corral et al. (2019) assume that a bacterium cannot uptake
glutamate if it is depolarized away from its homeostatic voltage even if glutamate is
environmentally available. It is possible that the voltage change affects other cellular
processes and molecules such as ammonium within the cell instead of the glutamate
intake, which would in turn affect the usage of glutamate. The role of ammonium
in these oscillations is examined in Jintao et al. (2015). A model based on changes
to other metabolic processes would likely lead to a similar decrease in the cellular
metabolism of depolarized cells as the model that is based on a diminished glutamate
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uptake. While the biological processes that lead to the stressed response are worthy
of further study, we cannot fully address them in this modeling study. The important
effect for the purposes of this model is that depolarized cells metabolize glutamate
more slowly, and they become stressed and hyperpolarize to recover. The mechanism
for the reduced glutamate metabolism that we use in this model is the same as that
used in Martinez-Corral et al. (2019), which assumes that depolarized cells cannot
uptake glutamate.

In our model, we introduce a diffusive-flux boundary condition at the biofilm inter-
face. The model in Martinez-Corral et al. (2019) uses an artificial flux approximation
to calculate the glutamate and potassium influx. It defines the exchange of these
molecules at a point within the biofilm as a function of that point’s distance to the
exterior interface. In this model, we replace this boundary calculation with a tradi-
tional Neumann flux boundary condition because the Neumann boundary condition
is simpler to implement for two-dimensional biofilms with irregular shapes.

Potassium, a positively charged ion, is the main signaling molecule in this model,
and it diffuses in the spaces between the cells. Because we do not have experimental
results that allow us to directly measure this diffusion process, we fit the model’s
potassium diffusion rate by comparing its extracellular potassium concentration to
the potassium concentration observed in experiments. In the experiments, we see
high concentrations of potassium throughout the biofilm for an extended period after
the cells hyperpolarize. Many biofilm models assume that the diffusion rate inside
the biofilm is around 60% of the diffusion rate in the fluid. Testing this assumption,
we find that a model with a potassium diffusion rate in the biofilm that is less than
60% of the fluid diffusion rate better matches the higher experimental potassium
concentrations. A diffusion rate of 60% leads the potassium to diffuse too quickly
out of the biofilm and into the flow. Our usage of a lower diffusion rate agrees with
the results from Larkin et al. (2018) in which the potassium diffusion is modeled
as a percolation process where potassium released from one cell can only affect the
cell’s direct neighbors. The authors find that the percentage of cells that participate in
the voltage oscillations reflects the percentage required for efficient transmission in
percolation theory. This result suggests that potassium cannot diffuse far from the cell
from which it originates, supporting our decision to model this confined movement
by setting the diffusion coefficient for potassium within the biofilm to be significantly
smaller than the coefficient within the fluid.

The diffusion of glutamate and potassium ions through the charged biomass is
a complicated process, and it merits further study outside the scope of this project.
Instead of assuming that the diffusion rate inside the biofilm is some fitted fraction of
the diffusion rate in fluid, one can calculate a diffusion rate that takes into account the
shape of the bacteria with a technique used in Fort et al. (2002). The interactions of
glutamate and potassium’s charges may also be important for calculating their diffu-
sion. We examine our assumption to approximate the diffusion rate in the following
section.
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The equations for the external glutamate and potassium concentrations, G and K ,
respectively, within the biofilm are defined below:

∂G

∂t
= DG

∂2G

∂x2
− δG

(1 + exp(V − Vth))
G(Gmax − Gin), (1)

∂K

∂t
= DK

∂2K

∂x2
+ FgKn

4(V − VK ) + FgL(V − VL)

− max(γK K (Kmax − Kin), 0). (2)

Glutamate and potassium diffuse through the biofilm in the spaces between the
cells, and this diffusion is represented by the first terms of Equations (1) and (2). Their
diffusion rates are defined as DG and DK , respectively. The values used for these and
other parameters in the simulations are listed in Table 1.

The second term in Equation (1) models the glutamate uptake by the bacteria.
The bacteria uptake glutamate if they are sufficiently polarized, there is glutamate
in the environment, and the cells’ internal glutamate level is below their maximum
concentration. The cells uptake glutamate using transporters powered by the proton
motive force, which is explained in Martinez-Corral et al. (2019). The cells must
maintain a certain level of polarization to uptake glutamate, which is examined in
Tolner et al. (1995). We use the same function for the dependence of glutamate uptake
on voltage as Martinez-Corral et al. (2019). The exponential term in this expression
corresponds to the quick halting of glutamate uptake if the cells’ voltage differential,
V , moves above their homeostatic voltage differential, Vth , thereby decreasing the
magnitude of their voltage differential. This exponential relationship assumes that the
glutamate transporters are very sensitive to voltage changes. Glutamate uptake is also
dependent on the glutamate availability in the environment and on the cells’ need for
glutamate, which we define as the difference between the maximum interior glutamate
level, Gmax , and the cells’ internal glutamate level, Gin .

Equation (2) represents the external potassium concentration as the molecules dif-
fuse through the biofilm and move through the cellular membrane both passively and
actively. Potassium moves passively through the potassium gates and through the leak
gates. The potassium gates are channels that the cell can open and close to allow
potassium to enter or leave the cell. The leak gates represent the permeability of the
cell membrane, which allows potassium to enter or leave the cell through small holes.
In the model, the potassium and leak gate are controlled by the openness of the potas-
sium gates, n, and the corresponding reversal potentials for the potassium and leak
gates, VK and VL . Here, F is a factor converting the voltage change to a potassium
change. We approximate the potassium uptake and release through the potassium and
leak gates using terms from the Hodgkin–Huxley Model introduced in Hodgkin and
Huxley (1952). Allowing the extracellular potassium tomove into the cells through the
leak gates and decrease the external potassium concentration is a new feature of this
model that reflects the mechanism through which the extracellular potassium depolar-
izes a cell. A higher concentration of extracellular potassium increases the potassium
uptake due to an increased osmotic pressure. Previous models focused on how this
potassium movement through the leak gates affects the voltage differential but did
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not account for the effects within the potassium concentration itself. Including this
uptake in the model ensures that the increase in extracellular potassium during a depo-
larization event is moderated by the potassium uptake of the depolarizing cells. The
final term in Equation (2) represents the cells’ potassium pumps through which they
can actively uptake nearby potassium if their internal potassium concentration, Kin ,
falls below a threshold, Kmax . The max function in this potassium pump term ensures
that the cells only use this pathway to uptake potassium and not to release potas-
sium. This simplified representation of potassium uptake does not take into account
the internal glutamate concentration, which has been found to affect the potassium
uptake of at least one potassium channel, KtrCD. A higher glutamate concentration
increases the potassium channel KtrCD uptake of potassium at low external potassium
concentrations ( Krüger et al. (2020)). We leave modeling the interaction of glutamate
concentration and potassium uptake to future work.

The boundary conditions for glutamate and potassium at the biofilm’s exterior
interface require that the concentrations and fluxes are continuous across the boundary,
which are described by the Neumann flux conditions below:

DG
∂G

∂x
= D f l

G (G0 − Gint )/BL , (3)

DK
∂K

∂x
= D f l

K (K0 − Kint )/BL , (4)

where D f l
G and D f l

K are the diffusion rates of glutamate and potassium in the fluid, G0
and K0 are the long-range glutamate and potassium concentrations, Gint and Kint are
the interfacial glutamate and potassium concentrations, and BL is the boundary layer
width. At x = 0, we represent the interior wall with the no-flux boundary conditions
of ∂G/∂x = ∂K/∂x = 0.

The corresponding equations for the glutamate and potassium concentrations in the
interior of the cell, Gin and Kin , respectively, are as follows:

dGin

dt
= δG

(1 + exp(V − Vth))
G(Gmax − Gin) − γGGin(Mgrow + rb)

− ∂

∂x
(UGin), (5)

dKin

dt
= −FgKn

4(V − VK ) − FgL(V − VL) + max(γK K (Kmax − Kin), 0)

− ∂

∂x
(UKin). (6)

Equation (5) models the glutamate concentration inside the bacteria. The first term
represents the cells’ glutamate intake. This term balances the external glutamate con-
centration in Eq. (1), but with an opposite sign to represent the transport of glutamate
across the cell membrane. The second term represents the cells’ glutamate consump-
tion for both its base metabolism and growth, where γG is the glutamate consumption
rate. The cells require glutamate to perform their base metabolic functions, and this
need is represented as rb in the equation.
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The cells also use glutamate to grow, and their growth propensity is represented by
the variable Mgrow. Growth can only occur when the bacteria are in “Grow Mode,”
or when Mgrow is high. When the bacteria are stressed, Mgrow is low, which slows
the glutamate consumption of the bacteria and allows for the glutamate to penetrate
the biofilm more deeply. We discuss this variable in more detail below. The model
in Martinez-Corral et al. (2019) also includes a term through which the cells regulate
their growth in response to their changing environment. In their model, the cells uptake
more glutamatewhen they have a higher internal glutamate level. This property creates
a delay in the glutamate uptake and growth that prevents the bacteria from reaching a
steady state, which allows for sustained oscillations. In this model, we use Mgrow as
a variant of this consumption delay where the biofilm cannot be hyperpolarized and
grow.

Equation (6) represents the cells’ internal potassium concentration. The first three
terms of this equation are also found in Eq. (2) to represent the transport of potassium
across the cell membrane.

The advection terms within Eqs. (5) and (6) reflect that Gin and Kin are quantities
within an individual cell that are pushed outward as the biofilm grows. Here, U is
the biofilm growth velocity defined throughout the biofilm. The growth velocity at
each point in a one-dimensional cross section of a biofilm is the sum of the biomass
growth between that point and the immobile wall. As bacteria reproduce, they push
the biomass away from the wall and farther into the fluid flow, which is discussed in
Wanner and Gujer (1986). All non-diffusive quantities in this system move with the
cellular growth and have a corresponding advection term in their equations.

The following equations define Mgrow and the corresponding growth equations:

Mgrow = TG
TG + TV

= Gin

Gin + Gu
/

(
Gin

(Gin + Gu)
+ (ηV tanh(γV (V /Vlow − 1)) + 1)

)
, (7)

U (x) = δgrow

∫ x

0
GinMgrowdx, (8)

dL

dt
= δgrow

∫ L

0
GinMgrowdx . (9)

Equation (7) defines the variableMgrow, which reflects the growth propensity of the
cells. The variable Mgrow varies between zero and one where the cells grow faster if
Mgrow is close to one. Let TG = Gin

Gin+Gu
and TV = (ηV tanh(γV (V /Vlow − 1)) + 1).

Then, TG is a Hill activation function that is large when Gin is higher than the lower
bound Gu , and TV is a hyperbolic tangent activation function that is large when V
is above the bound Vlow. The parameters ηV and γV are shape parameters for the
hyperbolic tangent activation function. Equation (7) is the steady-state solution of the
differential equation ∂Mgrow

∂t = (1−Mgrow)TG−MgrowTV . Then,Mgrow will be close
to 1 and the bacteriawill grow if TG ismuch larger than TV . The variableMgrow ensures
that the cells only grow when both their internal glutamate is high, making TG large,
and they are not hyperpolarized, making TV small. Since cells consume glutamate at
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a much lower rate when hyperpolarized, the nutrients can penetrate deeper into the
biofilm and arrive at the starving cells near the interior. The requirement that the cells
be near their homeostatic voltage differential in order to grow reflects what we see in
experimental data from Larkin et al. (2018).

As developed in Wanner and Gujer (1986), Equations (8) and (9) represent the
biofilm’s growth, where δgrow is the growth rate. Equation (8) computes the growth at
any point within the biofilm as an integral of the biomass growth between that point
and the wall. Equation (9) represents the growth of the biofilm’s length, L , which is
the distance between the base and the edge of the biofilm.

The most important difference in this model compared to previous ones relates to
how the cells react to potassium. In our model, cells respond to changes in potassium
instead of the absolute potassium level as represented in Fig. 1. We assume that only
newly arriving potassiummolecules affect the cells’ voltages.We base this assumption
on the evidence that bacteria can adjust to a range of potassium levels over time. Three
of the mechanisms that cells use to regulate potassium are studied in Gundlach et al.
(2017). The authors show that cells that express only one of the three transporters,
KtrAB, KtrCD, and KimA, reach their half-maximal growth rates at different external
potassium concentrations, suggesting that a cell’s ability to uptake potassium through
its various transporters impacts its growth. In this model, we assume that a change
in external potassium temporarily affects the cell’s ability to maintain its homeostatic
voltage, and the voltage change disrupts the cell’s growth. A change in environmental
potassium could be a better indicator of cellular stress than the absolute potassium
level because a change in potassium could force bacteria out of their equilibrium state.
It is likely that the absolute potassium level, as well as other factors, plays a role in the
cells’ glutamate uptake, but in this model, we consider a change in potassium as the
main influencing force. We create the variable Kacclimated to represent the potassium
level to which the cells are accustomed. This variable then follows K linearly at a rate
of ηK in the following equation:

dKacclimated

dt
= ηK (K − Kacclimated) − ∂

∂x
(UKacclimated). (10)

The voltage is affected by the difference between the environmental potassium level,
K , and the level to which the cell is accustomed, Kacclimated , which is incorporated
into the reversal potential for the leak gates VL . The following set of equations describe
the voltage differential within the biofilm:

dV

dt
= −gkn

4(V − VK ) − gL(V − VL)

− max(γK K (Kmax − Kin), 0)/F − ∂

∂x
(UV ), (11)

dn

dt
= α

(Gmax − Gin)
m

(Gmax − Gl)m + (Gmax − Gin)m
(1 − n) − βn − ∂

∂x
(Un), (12)

VK = VK0 + δK K , (13)

VL = VL0 + δL(K − Kacclimated). (14)
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Fig. 1 The effects of
extracellular potassium on cells
near the center of the biofilm
versus cells near the exterior.
The potassium ions in orange are
newly arrived molecules, and we
assume that they have same
depolarizing effect on both cells
despite differing ambient
potassium concentrations (Color
figure online)

Bacteria near 
biofilm center

Bacteria near
biofilm exterior

Cell

K

Equation (11) represents the voltage differential across the cells’ membranes, V .
In this model, the cells use potassium to modify this voltage differential. The terms
in this equation are from the Hodgkin–Huxley model, and they correspond to the
potassium and leak gate terms from the potassium equations, Eqs. (2) and (6). In this
model, we assume that the only molecule moving through the leak gates is potassium,
and we do not include the other ions that likely move through the leak gate. We
observed oscillations by solely considering the effects of potassium on the cell, but
futurework should examine thepotential role of other ionswithin the cells’ polarization
processes. The penultimate term in Eq. (11) corresponds to the cells’ active pumping
of potassium to maintain their voltage differential, and it is normalized here by F . The
model does not account for changes in the voltage differential caused by diffusing,
external potassium, which might also be important to the oscillations.

Equation (12) represents the openness of the cells’ potassium gates, n. The gates
open with the opening rate α according to the expression

α
(Gmax − Gin)

m

(Gmax − Gl)m + (Gmax − Gin)m
,

which is similar to a Hill function withm as the Hill coefficient. However, this expres-
sion is large when Gin < Gl and small when Gin > Gl . This expression activates
the starving response in the bacteria when their internal glutamate level is low. With
low internal glutamate, the bacteria open their potassium gates to release potassium
and hyperpolarize. The second term in Eq. (12) represents that bacteria close their
potassium gates at a decay rate of β if they are not experiencing stress.

The reversal potentials VK and VL are defined in Eqs. (13) and (14). The reversal
potential for the potassium gates, defined in Equation (13), has a base value of VK0
and is affected by the external potassium concentration with an influence strength
of δK . The model in Martinez-Corral et al. (2019) uses a Nernst potential to define
the potassium reversal potential. While we recognize the merit of this approach, we
simplify the equation here to be of the same form as the corresponding equation for
the leak gates. The reversal potential for the leak gates, defined in Eq. (14), has a base
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value of VL0 and is affected by the difference between the environmental potassium
level, K , and the level to which the cell is accustomed, Kacclimated . The parameter
δL defines the strength of this influence. A rise in the external potassium leads the
potassium to leak into the bacteria causing the cells to depolarize.

Most experimental data from these systems are reported as the fluorescence of
molecular indicators. To enable comparison,we convert both the voltage andpotassium
concentrations to the fluorescent intensity of their corresponding indicators, thioflavin
T (ThT) and Asante potassium green (APG), named T and A, respectively, in the
equations below:

dT

dt
= αT

1 + exp(gT (V − V0T ))
− γT T − ∂

∂x
(UT ), (15)

d A

dt
= αAK − γA A − ∂

∂x
(U A). (16)

Equation (15) has a similar form to the ThT fluorescence equation used inMartinez-
Corral et al. (2019). The indicatorThTfluoresces if the voltage falls below the threshold
V0T . The exponential term produces a strong transition point for ThT fluorescence if
the voltage differential drops below V0T . The parameter gT adjusts ThT’s sensitivity
to this transition point, and γT is the decay rate of the indicator. Equation (16) uses a
linear model to represent the fluorescence of APG where αA is the activation strength
of APG, and γA is the decay rate of the indicator.

Together the equations presented in this section form an oscillatory system for both
the growth and the voltage differential. The starving cells release potassium, which
disrupts themetabolismof neighboring cells, causing them to become stressed and stop
growing. The cells release potassium to hyperpolarize when stressed which creates
the potassium wave that moves from the center of the biofilm to the exterior. The
hyperpolarized bacteria refrain from growing while recovering, allowing glutamate
to diffuse deeper into the biofilm. This one-dimensional model reproduces prominent
features from experiments as discussed in the following sections.

2.1 ComparingVoltage, Growth, and Potassium to Experiments

To validate the set of equations introduced in the previous section, we compare impor-
tant quantities from themodel to the experimental data such as the relationship between
voltage oscillations, the growth, and the potassium concentration. We first examine
how hyperpolarization affects a cell’s growth rate. Experiments show that a biofilm
typically does not grow when its cells are hyperpolarized ( Larkin et al. (2018)). Our
model prevents bacteria from growing while hyperpolarized through the Mgrow vari-
able. This effect can be seen in Fig. 2, which shows that the biofilm grows faster when
its average voltage is higher. The biofilm’s initial width is 150 microns. We compare
this relationship to experimental data from Prindle et al. (2015) in Fig. 3 in which the
biofilm’s initial values for the data fields are the same as in the previous simulation.
We see in both the experimental data and the simulation that growth is high when the
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Fig. 2 (Left) Mean voltage and growth over time from the model. Voltage is positively related to growth.
The oscillations become stronger over time. Highest growth occurs when the biofilm is not hyperpolarized.
(Right) Mean voltage and mean potassium over time from our model. Voltage is negatively related to
potassium. Potassium is at its highest when the biofilm is depolarizing as the cells release potassium.
Potassium begins to fall before the voltage increases because some of the potassium diffuses into the bulk
flow (Color figure online)

ThT fluorescence (which indicates hyperpolarization) is low, and the growth is low
when the fluorescence is high.

We see that in experiments from Prindle et al. (2015) the average external potas-
sium increases within the biofilm as the average voltage differential decreases. This
property is integral to the system because it reflects how the signal is propagatedwithin
the biofilm. If a cell releases potassium, its voltage differential becomes more negative
because the cell is losing a positive ion. A newly released potassium ion may enter a
neighboring cell, but the voltage change from this uptake should not more than offset
the voltage change in the biofilm caused by the ion leaving its previous cell. This
property has not been adequately reflected in previous models, such as in Martinez-
Corral et al. (2019). We implement the model from this paper, and we show a resulting
plot of the data in Fig. 4. We see that the voltage and potassium are inversely related
in the original form. However, when we modify the equation to use a Neuman flux
boundary condition and a constant internal diffusion rate, the voltage and potassium’s
relationship change. The modified model shows an increase in the voltage during a
period when cells are releasing potassium, which appears to not reflect the physical
constraints of the system. In Fig. 2, we see that our model correctly indicates that
the voltage falls as the external potassium increases. Potassium and voltage are not
strictly inversely related because the potassium diffuses out of the biofilm causing the
potassium levels to drop before the rise in the voltage. We compare these quantities
to data from Prindle et al. (2015) in Fig. 5 where the fluorescence indicating hyperpo-
larization and the fluorescence indicating external potassium rise and fall in relative
synchronicity for both the experimental and the model data. The initial conditions
used in the one-dimensional simulations are G = 30 mM, K = 8 mM, Gin = 20
mM, Kin = 300 mM, Kacclimated = 8 mM, V = −156 mV, and n = 0.1 throughout
the biofilm and the initial width of 0.2 mm for the biofilm.
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Fig. 3 (Left) Experimental mean voltage fluorescence and growth adapted from Prindle et al. (2015).
Voltage is measured as its fluorescent indicator, ThT, which exhibits higher fluorescence when the cell is
more polarized meaning that the voltage differential is more negative. The voltage fluorescence and the
growth are inversely related. (Right) Mean voltage fluorescence and growth from the model. The quantities
from the model demonstrate a similar pattern to those from the experiment. Note that the fluorescence data
from the experiment are scaled differently than the model data (Color figure online)

2.2 Size at Oscillation Onset and Period Length

The size at which the biofilm initiates its first oscillation depends on the nutrient
availability and the cellular consumption rate of the glutamate within the biofilm. We
fit the growth rate of the model so that the biofilm initiates its oscillatory behavior
at a similar size to experiments with 30 millimolar glutamate solutions. The initial
biofilm width in the simulations is 70 microns with the addition of a random uniform
variable ranging from ±25 microns. In the simulation, the start of an oscillation is
defined as the moment when the biofilm’s mean voltage stops decreasing and begins
to increase. In Fig. 6, we double the reportedwidth of the simulated biofilm to compare
it to the experimental measurement, which reports the diameter of the biofilm instead
of its radius. For some initializations, the modeled biofilm displays one unsustained
oscillation at the start of the simulation. To remove these spurious oscillations from
the model’s onset data, we do not include unsustained oscillations that occur in the
simulation before the biofilm’s doubled width reaches at least 300 microns. In Fig.
6, we observe that in both the experiments and the model the mean size at which
the biofilms begin to oscillate is near 500 microns. The experiments have a larger
variability around the mean than the model, which is typical of the natural variability
inherent in physical systems.1

In both themodel and the experiments,we see that the period of oscillation generally
increases as the biofilm’s size increases, as shown in Fig. 7. The simulated width
we report is the width of the one-dimensional model, which we compare with the
experimental radius measurements. Though these measurements are different, we can
still compare the general trend. The initial width of the biofilm in the model is 80,
90, and 100 microns. The simulated biofilm begins to oscillate at different widths
depending on its initial width, which contributes to the variation seen in the model

1 Adapted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, Nature,
Ion channels enable electrical communication in bacterial communities, Prindle et al. Copyright 2015
Macmillan Publishers Limited. (2015), https://www.nature.com.
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Fig. 4 (Left) Mean voltage and potassium from an implementation of the model from Martinez-Corral
et al. (2019). In this model, voltage and potassium appear to be inversely related. (Right) Mean voltage and
potassium from an implementation of the same model but with a Neumann flux boundary condition and a
constant internal diffusion rate. Here, we see that extracellular potassium is increasing while mean voltage
initially rises (Color figure online)
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Fig. 5 (Left) Experimental mean voltage and potassium fluorescence adapted from Prindle et al. (2015).
The fluorescence of the voltage indicator, ThT, is higher when the cell is more polarized, and the fluores-
cence of the potassium indicator, APG, is higher when the extracellular potassium concentration is higher.
The fluorescence for voltage and potassium are highly correlated. (Right) Mean voltage and potassium flu-
orescence from the model. The quantities from the model show a similar pattern to those in the experiment.
Note that the fluorescence data from the experiment are scaled differently than the model data (Color figure
online)

data. Some of the oscillations begin as only small changes in the voltage and growth
rate, which can have shorter periods. In themodel data, we see that most of the increase
in period length occurs before the biofilm reaches 400microns, after which the biofilm
appears to converge to a longer period of oscillation in Fig. 7. This convergencemay be
the result of the varying activity levels of the bacteria. The depth of this participatory
portion near the fluid interface may reach a limit as the biofilm grows larger while the
center of the biofilm remains consistently hyperpolarized. We have not explored if a
similar phenomenon occurs in experimental biofilms to test if the period of oscillation
converges to a similar oscillation period.

In Fig. 8, we observe how the behavior of the model changes under a few important
modifications: setting the GrowMode, Mgrow to be constant, having the bacteria react
to the absolute potassium concentration, and eliminating the leaking of potassium
ions into the cells. In these comparisons, we initiate the biofilm at 150 microns and
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Fig. 6 (Left) Experimental biofilm size at the onset of oscillations in 30 millimolar solution of glutamate,
adapted from Jintao et al. (2015).5 The plot has 53 observations. The mean diameter at oscillation onset is
near 600 μm. (Right) Onset size of oscillations for model biofilm under the same glutamate concentration.
The size is calculated as twice the biofilm’s width when the mean voltage stops decreasing and starts
increasing. We double the model’s width to better match the experimental measurement of diameter. The
plot has 53 observations. The modeled biofilm has a mean onset size between 500 and 600 μm. The small
variation seen in the model is due to randomly initiating the biofilm’s size near 70 microns at the start of
the simulation (Color figure online)

Fig. 7 (Left) Experimental period of oscillation by biofilm size (radius) adapted fromMartinez-Corral et al.
(2018) with permission from Rosa Martinez-Corral. The oscillation period lengthens as the biofilm grows.
(Right) Period of oscillation by biofilm size (width in 1D model) from the model from three initial biofilm
widths. The size is calculated as the biofilm’s size when the mean voltage transitions from decreasing to
increasing. To the right of the dashed line is model data from the same domain as the experimental data.
To the left of the dashed line is model data that shows a lengthening of the oscillation period (Color figure
online)

use the same initial conditions for the quantities that we used in the previous figures.
The first modification we perform is setting the Grow Mode variable to be constant
at Mgrow ≡ 0.2. We chose this value so that the biofilm hyperpolarizes gradually
as it grows. If we set Mgrow ≡ 1, the biofilm’s growth rate is high enough that the
biofilm hyperpolarizes at the start of the simulation. With Mgrow ≡ 0.2, the model no
longer oscillates, which suggests that the bacterial growth regulation is an important
component of the oscillations. Next, we show how the model’s behavior changes if
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Fig. 8 Mean voltage and potassium over time: (Top Left) from the original model, (Top Right) from a
model with a constant Grow Mode, Mgrow ≡ 0.2, (Bottom Left) from a model in which the cells do not
adjust to the changing external potassium concentrations, Kacclimated ≡ 0 and δL = 6, (Bottom Right)
from a model in which potassium does not leak in and out of the cell through the leak gates, see Eqs. (17)
and (18) (Color figure online)

the cells no longer react to a change in potassium but to the absolute potassium level,
a feature common to other models. In this case, we set Kacclimated ≡ 0 so that the
bacteria cannot adapt to a change in potassium, and we lower δL to 6 mV/mM, or
10% of its fitted value, to reduce the biofilm’s reactivity to the ion. If δL remains at
its full value within the modified model, the biofilm may be too reactive to find an
equilibrium before it begins to hyperpolarize. We see small oscillations occur in the
voltage and potassium, which could a product of the initialization where the biofilm is
initiated away from its equilibrium value. However, these oscillations do not achieve a
similar magnitude to the oscillations from our original model, and eventually they are
damped. It appears that the model biofilm’s ability to adjust to a changing potassium
concentration improves its ability to oscillate like the experimental biofilm. Finally,
we compare the oscillatory biofilm model to a model in which the potassium does not
leak back into the bacteria. We, respectively, change Eqs. (2) and (6) to

∂K

∂t
= DK

∂2K

∂x2
+ FgKn

4(V − VK ) − max(γK K (Kmax − Kin), 0), (17)

dKin

dt
= −FgKn

4(V − VK ) + max(γK K (Kmax − Kin), 0) − ∂

∂x
(UKin). (18)
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Without potassium leaking back into the cell, the potassium and voltage spike
together in what could be a feedback reaction. Then, both the voltage and potassium
fall together. This relationship between voltage and potassium appears to not follow the
physical constraints of the system because voltage typically falls as the cells release
potassium. Our model’s addition of the leak gate term to the potassium equation
improves its ability to represent the physical system.

Most of the variables used here were chosen because their combination produces
results that were qualitatively similar to the experimental data we use for comparison.
Their accuracy would likely improve from a closer quantitative study. However, quan-
titatively comparing the model to the data is often difficult because we do not have
precise models that relate the fluorescence data from the experiments to the underlying
voltage differential and potassium concentration. Here, we perform a sensitivity anal-
ysis to better understand the oscillations so that future work may focus on important
parameters to address the quantitative accuracy of the model. We report the results in
Table 2.

In the sensitivity analysis, we consider the magnitude of the potassium oscillations
as a proxy for the oscillation’s strength. We begin the simulations at a biofilm width
of 300 microns and run the simulation for a 20-hour time period. We then calculate
the mean potassium value within the biofilm at each time point during the 20-hour
period and find the difference between the highest and lowest values, which gives the
magnitude of the potassium oscillations.We calculate the sensitivity by adding a 0.001
difference to each parameter and use a finite difference to approximate the derivative.
Since each variable is not scaled equally, we also report the percent change in the
magnitude of the potassium oscillations with respect to a 10% change in each param-
eter. We calculate this percent change in the magnitude of the potassium oscillations
through the following formula

∂O

∂ p
× 0.1|p|

O
× 100%,

where O is the magnitude of the oscillations and p is the value of the parameter.
It appears that Vth , which affects the glutamate uptake, and Vlow, which affects the

growth rate, have the largest percent effect on the magnitude of the potassium oscilla-
tions.RaisingVth increases themagnitude of the potassiumoscillations by reducing the
bacteria’s ability to uptake glutamate, increasing the bacteria’s propensity to hyperpo-
larize in order to uptake glutamate. Raising Vlow decreases themagnitude of potassium
oscillations by reducing the bacteria’s growth rate and reducing their glutamate usage,
thereby reducing the bacteria’s propensity to hyperpolarize to uptake glutamate. The
oscillations are likely sensitive to Vth and to Vlow because they are incorporated into an
exponential function and hyperbolic tangent function, respectively, which can produce
large derivatives.

It appears that VK0, the reversal potential, has the next highest relative effect on the
magnitude of the potassium oscillations. Raising VK0 decreases the bacteria’s ability
to hyperpolarize, and reduces themagnitude of oscillations. The potassiumoscillations
are also sensitive to the variables that relate to glutamate consumption, such as Gmax ,
γG , and Gl , which play an important role in the cell’s starvation process.
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Table 2 Sensitivity of
parameters used in simulation

Name Approximate derivative
of the magnitude of the
potassium oscillation with
respect to parameter

Percent change in themag-
nitude of the potassium
oscillation with a 10%
change in parameter

DG −33.2737 −2.3871%

DK −37.8966 −4.5312%

D f l
G −28.1194 −1.8559%

D f l
K −1.7722 −1.1697%

G0 −1.5467 −6.1646%

K0 0.5807 0.6172%

δG 0.6480 0.8609%

Vth 3.1252 62.2792%

Gmax 3.2329 8.5900%

F 6.8217 5.0752%

gK 0.1039 2.4856%

gL −8.4926 −1.3539%

γK −128.5507 −0.4270%

BL 85.7137 5.6936%

γG 34.1090 5.0979%

rb 106.5717 1.4158%

Gu −0.4833 −1.1558%

ηV −0.6851 −1.8203%

γV 2.8506 7.5740%

Vlow −2.6697 −62.0683%

δgrow 313.3146 0.3122%

ηK 0.4915 1.9589%

α 8.6587 5.7516%

β −14.0939 −4.6810%

m −1.0573 −0.2809%

Gl 3.7702 5.0088%

VK0 −0.2268 −11.4517%

VL0 0.0966 2.0028%

δK −22.1445 −2.9419%

δL −0.1369 −1.0909%

The diffusion constants within the biofilm, DG and DK , appear to play a role in the
strength of the oscillations. In this model, we have assumed that the parameters are
fractions of the diffusion constants in water. Though the percent influence that they
have on the oscillations does not appear to be high enough to qualitatively affect the
oscillations, future work should take a closer look at the physical motivation of these
parameters.
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The variables related to ThT and APG fluorescence are not reported in Table 2.
The equations related to ThT and APG convert the voltage differential and potassium
concentration to quantities that we can experimentally measure, but they do not affect
the oscillations themselves.

Now that we have examined the properties of our one-dimensional model, we use
this set of equations to create a two-dimensional model. The two-dimensional model
allows us to explore the spatial complexity of the oscillations. We present this two-
dimensional model in the following section.

3 Two-Dimensional Model

The true benefit of the two-dimensional model is that we can directly model the
behavior of a biofilm from an experiment by inputting the biofilm’s complex shape
into the simulation. In this section, we introduce a two-dimensional model to represent
the data from the experiments performed in Prindle et al. (2015). The flow cell in their
experiment is about 3 mm long and 3 mm wide but only 5–7 microns in depth. The
narrowdepth only allows the biofilm to grow5–7 cells deep,which confines the biofilm
to a two-dimensional layer. This cross section allows the experimentalists to visualize
properties within the biofilm that would typically not be visible from the exterior of a
three-dimensional biofilm. By viewing a two-dimensional “slice” of a biofilm, we can
track how the electrical impulse moves from the interior to the exterior of the biofilm.

We model the propagation of this signal using a two-dimensional model based on
the continuum model developed in Merkey et al. (2009). This system uses a Stokes-
flow approximation to solve for the fluid velocity through the flow cell. Let u and v

be the x− and y−directional fluid velocities, μ be the fluid viscosity, and P be the
pressure field. Then, the reduced equations for the fluid flow are

μ∇2u = ∂P

∂x
,

μ∇2v = ∂P

∂ y
,

∇2P = 0.

The flow cell has a rectangular shape defined by an inlet on the left side, an outlet
on the right side, and walls on the top and the bottom of the domain. The boundary
condition for the fluid at the interior walls and at the biofilm boundary is a no-slip and
no-penetration boundary condition where u = 0, v = 0, and ∇P · n = 0, where n
in the outward normal. At the inlet, we use the boundary conditions u = u0, v = 0,
and ∂u/∂x = 0, where u0 is the initial speed. At the outlet we approximate a far-field
boundary with the conditions ∂u/∂x = 0, v = 0, and P = 0.

We then solve for the concentrations of the diffusive quantities glutamate and potas-
sium in both the fluid and the biofilm. In the fluid, these equations are

D f l
G ∇2G − ∇ · (G〈u, v〉) = 0, (19)
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D f l
K ∇2K − ∇ · (K 〈u, v〉) = 0, (20)

with the boundary conditions G = G0 and K = K0 at the inlet, no-flux conditions
at the interior walls in which ∇G · n = ∇K · n = 0, and far-field conditions at the
outlet in which ∇G · n = ∇K · n = 0 where n represents the outward normal at the
boundary. At the biofilm interface, the boundary conditions for G and K require that
the concentrations and the fluxes are continuous across the interface, which lead to
the following equations:

DG∇Gint · n = D f l
G ∇Gext · n, (21)

Gint = Gext , (22)

DK∇Kint · n = D f l
K ∇Kext · n, (23)

Kint = Kext , (24)

where Gint , Gext , Kint , Kext refer to the glutamate and potassium concentrations
inside and outside the biofilm at the interface, respectively, and n is the outward
normal.

We solve the same equations as in the one-dimensional model for the diffusive
quantities glutamate and potassiumwithin the biofilm using Eqs. (1) and (2). We solve
the non-diffusive quantities, or the cellular state variables, only within the biofilm and
not in the surrounding fluid. For the cellular state variables, we use Eqs. (5–7) and
(10–16) where the advection component of the equations uses the multidimensional
biomass velocity and the multidimensional ∇ operator. We solve these equations on a
two-dimensional grid that covers the flow-cell domain.

In the two-dimensional model the growth equations, which replace Eqs. (8) and
(9), use a potential function to approximate the viscous flow induced by the cellular
growth throughout the biofilm

Ω = δgrow∇2 (
Mgrow × Gin

)
, (25)

U = ∇Ω, (26)

where U evaluated at the boundary of the biofilm gives the directional growth of the
boundary.We track the biofilm growth and themoving biofilm-fluid interface using the
level-set method. The level-set method was introduced in Osher and Sethian (1988)
and discussed further in Sethian (1999), Osher and Fedkiw (2003), and references
therein. Following work from Merkey et al. (2009), we use the zero level-set function
of φ to track the biofilm interface, where φ solves the following equation:

∂φ

∂t
= U · n||∇φ||, (27)

where n is the outward normal evaluated at the points along the biofilm boundary
where φ = 0. The level-set method ensures that the boundary grows at the rate deter-
mined by Eq. (26). After implementing this set of equations within a two-dimensional
simulation, we compare the model results to experiments.
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3.1 Comparing the Two-Dimensional Model to Experiments

In this paper, we initialize a biofilm to be the same shape as a biofilm from the
experiments in Prindle et al. (2015)with the fluid inlet on the right. The fluid velocity at
the inlet is parabolic across the chamberwith amaximumvelocity of 90millimeters per
hour in the center and 0 at the top and bottom walls, which is close to the fluid velocity
used in experiments. The initial conditions for the two-dimensional simulations are
G = 30 mM, K = 8 mM, Gin = 20 mM, Kin = 300 mM, Kacclimated = 8 mM,
V = −160 mV, and n = 0.1. The simulations demonstrate that the bacteria located
farther from the fluid interface become stressed due to nutrient limitation, and they
release potassium to hyperpolarize. This voltage change travels from the interior of
the biofilm near the flow-cell wall to the fluid interface. In this process, the whole
biofilm hyperpolarizes from the inside out.

The results of this model are shown in Fig. 9 in which we can see the hyperpolar-
ization and the potassium wave spread throughout the simulated biofilm. The videos
of these quantities from the model can be found in the supplementary material. The
voltage plots show that the hyperpolarization moves from the center of the biomass to
the fluid interface. The center of the biofilm as well as the peripheral regions become
highly hyperpolarized at minute 60. The middle region only hyperpolarizes a small
amount initially, but as can be seen in the accompanying videos, hyperpolarizes a large
amount later in the oscillation. The delayed hyperpolarization of the middle region
could be a result of the Mgrow variable reflecting metabolic adaptation. The cells near
the interface grow and have a high glutamate consumption rate, which leads to a high
level of stress when they experience the potassium wave. The high stress could lead
the peripheral cells to quickly hyperpolarize. The middle region consumes glutamate
more slowly, which could delay and mitigate their stress response.

The potassium plots in Fig. 9 show how the oscillations initiate and propagate.
The left side of the biofilm initiates its hyperpolarization first. However, the region on
the right experiences a higher-amplitude potassium pulse. The magnitude of the right
side’s pulse could be due in part to the thickness of the right region or that the region
is downstream and experiences slightly lower environmental glutamate levels. We
visually estimate the potassium wave speed to be around 20–50 microns per minute.
This wave speed is similar to those seen in experiments such as in Martinez-Corral
et al. (2019) which provides data from one experiment in which we visually estimate
the experimental wave speed to be near 10 microns per minute. The period of the
oscillations in the simulation is around three to four hours. This period is a bit longer
than the period in the reference experiment, in which the period appears to be around
two to three hours. However, the experimental period can take on a range of values,
as shown in Fig. 7.

Potassium is not confined to the interior of the biofilm, and it diffuses out of the
biofilm and flows downstream. The release of potassium affects spatially separated
bacteria within the flow cell. We take a closer look at the effects of potassium within
the fluid in the following section in which we model multiple interacting biofilms
within the same flow cell.
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Voltage Potassium

Minute 0

Minute 20

Minute 40

Minute 60

Fig. 9 Voltage and potassium within a two-dimensional biofilm simulation during one oscillation. The
white background in the voltage plots indicates no data and the white line in the potassium plots indicates
the edge of the biofilm (Color figure online)

We alsomodel ThT fluorescence within the biofilm and compare these distributions
to experimental data in Fig. 10. The video of this quantity from the model can be
found in the supplementary material. The modeled ThT fluorescence does not match
the experiment at every spatial point, but the hyperpolarization pattern is qualitatively
similar. In both the experiment and the model, the fluorescence is high near the wall
of the flow cell, far from the fluid interface. We also see the high fluorescence wave
travel from the interior to the exterior, which indicates the spread of hyperpolarization.

Another interesting feature of the model is the spatial banding that appears as
the biofilm hyperpolarizes. The middle of the biofilm is slower to become highly
fluorescent than the periphery, even though the potassium wave travels through the
middle to reach the fluid interface. As suggested earlier, this effect could be a result of
theMgrow variable, which limits the growth and glutamate consumption of this middle
region. There appears to be some amount of fluorescent banding in the experimental
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Experiment Simulation

Minute 40

Minute 20

Minute 60

Minute 0

Fig. 10 ThT fluorescence from an experiment compared to a simulation during one oscillation. The imaged
region in the experimental data has roughly a length of 3 mm and a width of 1 mm. The two vertical
lines in the experimental fluorescence data correspond to slight changes in the flow-cell depth. The black
background in the experimental plots indicates no data, and the white background of the simulation plots
indicates no data (Color figure online)

data as well. At minute 60, the periphery of the experimental biofilm has a higher
fluorescence than the center of the biofilm. We would like to study this effect further.

Themodel we develop here can capturemany important spatial features of the oscil-
lations, which enables further study of these behaviors. Now that we have compared
the simulated behavior of a single biofilm to the experimental data, we demonstrate
the full utility of this two-dimensional model in modeling an entire flow cell with
interacting biofilms in the following section.

3.2 Modeling Interacting Biofilms within a Flow Cell

Many of the experiments performed on this biofilm system are implemented within
flow cells with multiple biofilms. One-dimensional models are not able to capture the
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Voltage

Potassium

ThT Fluorescence

Minute 0 Minute 30 Minute 60

Experimental ThT Fluorescence

Fig. 11 Simulated voltage, potassium, and ThT fluorescence of multiple biofilms within a flow cell. We
compare the data to experimental ThT fluorescence with the same initial shape. The depolarization spreads
between separated biofilms as potassiumdiffuseswithin thefluid.Thedepolarizationwavebegins in the large
biofilmon the bottomof the flowcell and spreads to the other biofilms. The imaged region in the experimental
data has a length of 3 mm and a width of 3 mm. The vertical line in the experimental fluorescence of the
biofilm on the bottom wall corresponds to a slight change in the flow-cell depth. White space in the model
images indicate no data and the white lines in the potassium images indicate the boundaries of the biofilms
(Color figure online)

123



60 Page 26 of 28 N. Ford et al.

interactions between multiple biofilms within a flow cell. The flow cells have multiple
cell traps that catch planktonic bacteria as they flow through the chamber and provide
the seeds for distinct biofilms. These biofilms grow and influence their neighbors
both by consuming glutamate and by releasing potassium. We demonstrate that the
simulation developed here is capable of modeling interacting biofilms.

We use our two-dimensional simulation to model multiple biofilms in a flow cell
that is 3 millimeters by 3 millimeters. The fluid velocity at the inlet is parabolic with
a maximum velocity of 10 millimeters per hour in the center and 0 next to the walls
of the flow cell. The velocity at the inlet was chosen so that each biofilm oscillates
at its initial size, and it is lower than the experimental velocity to ensure that the
biofilms synchronize in the model. The initial shapes of the biofilms are taken from
the comparison experiment.We calculate the voltage, potassium, andThTfluorescence
from the experimental setup in Prindle et al. (2015), and we show the results in Fig.
11. The videos of these quantities from the model can be found in the supplementary
material. We simulate three biofilms in the flow cell: a large biofilm on the bottom
and two smaller biofilms above the larger one. The large biofilm begins to oscillate
first because its size causes the bacteria at its center to become nutrient starved before
the bacteria in the other biofilms. We see that the oscillations in voltage, potassium,
and ThT of each biofilm in the model are synchronized since they are likely driven
by the hyperpolarization of the largest biofilm at the bottom wall. In the experimental
ThT fluorescence in Fig. 11, we also see a synchronization in oscillation that is likely
driven by the oscillations of the larger biofilm at the bottom of the flow cell. We would
like to explore the properties of this synchronization in future work.

4 Conclusion

In this paper, we introduced and discussed a new model for electrical communication
in B. subtilis. We updated the propagation mechanism to depend on the change in
potassium level instead of the absolute potassium level, which incorporates bacteria’s
ability to adjust to environmental changes and, in our experience, produced oscilla-
tions similar to those seen in experiments under a larger range of parameters. We
also updated the boundary condition at the biofilm interface and the potassium leak
mechanism so that the potassium and the voltage oscillations are more synchronized.

Using this new model, we explored the relationship between voltage, growth,
and potassium, showing that the voltage and the growth follow a similar pattern to
each other while the voltage differential and the extracellular potassium are closer to
inversely related. We also examined the diffusive properties of the system including
how the biofilm’s size relates to the initiation and the period of its oscillations.

We then adapted this model into a two-dimensional system using the level-set
method to track the boundary. The ability to simulate a two-dimensional biofilm allows
us to copy a biofilm’s shape from an experiment and closely compare the model to
the physical system. We examined the voltage, the potassium, and the ThT fluores-
cence within the model. We are also able to examine the interactions between multiple
biofilms within a flow cell and observe how separated biofilms synchronize by releas-

123



A Two-Dimensional Model of Potassium Signaling... Page 27 of 28 60

ing potassium into the flow. The model demonstrates synchronization patterns similar
to those in experiments.

This model can enable researchers to computationally explore this biofilm system
in connection with their experiments. This model can be used to test hypotheses about
the biofilms such as those relating to the growth speed, the effect of potassium on
cells, and how collective oscillations can arise, or fail to arise, based on the individ-
ual behavior of the cells. The greatest benefit of this model is that we can compare
the model’s results by directly copying the shapes of experimental biofilms, which
allows researchers to study the two-dimensional properties of the system. For exam-
ple, researchers can study the wave speed of the potassium signal through spatially
segregated cells of differing phenotypes. We can also explore properties such as the
emergence of oscillations within a single biofilm and the synchronization between
separated biofilms within a single flow cell. Understanding the spatial properties of
the system can help scientists find methods to control the biofilm’s growth and dis-
persal in more realistic environments, potentially leading to new ways to treat biofilm
growth and any associated infections.

In future research, we would like to further explore cellular metabolism and the
synchronization of oscillations initializing from different regions within a biofilm.
First, we would like to understand how a rise in external potassium disrupts cellu-
lar metabolism. We believe that this study could provide a better understanding of
the cellular mechanisms that create biofilm-wide oscillations. In particular, studying
metabolism could give us further insight into the depolarization and recovery process
of a cell and how it regulates growth using a mechanism such as the Grow Mode
presented here. We would then like to explore howmetabolism and changes in growth
rates either lead to synchronicity within the biofilm or allow for regional divergence
in oscillations within large biofilms.

This oscillatory behavior ofBacillus subtilis involvesmany complex processes, and
we are just beginning to put the pieces together. Understanding the components of the
oscillations could inspire new methods to influence and even control certain biofilms’
behavior, such as the attachment and growth, using potassium signaling. These new
control methodswould not rely on harsh treatments such as antibiotics but on adjusting
the biofilm’s environmental conditions to influence its oscillatory behavior.
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