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SUMMARY

Signal transmission among cells enables long-range
coordination in biological systems. However, the
scarcity of quantitative measurements hinders
the development of theories that relate signal propa-
gation to cellular heterogeneity and spatial organiza-
tion. We address this problem in a bacterial com-
munity that employs electrochemical cell-to-cell
communication. We developed a model based on
percolation theory, which describes how signals
propagate through a heterogeneous medium. Our
model predicts that signal transmission becomes
possible when the community is organized near a
critical phase transition between a disconnected
and a fully connected conduit of signaling cells. By
measuring population-level signal transmission with
single-cell resolution in wild-type and genetically
modified communities, we confirm that the spatial
distribution of signaling cells is organized at the pre-
dicted phase transition. Our findings suggest that at
this critical point, the population-level benefit of
signal transmission outweighs the single-cell level
cost. The bacterial community thus appears to be
organized according to a theoretically predicted
spatial heterogeneity that promotes efficient signal
transmission.

INTRODUCTION

Biological systems, such as tissues or bacterial communities,

often require reliable signal transmission among cells to coordi-

nate actions at a distance (Debanne et al., 2011; Notaguchi and

Okamoto, 2015). In metazoans, highly specialized and sophisti-

cated structures are dedicated to signal transmission, such as

axons that relay electrical signals in the nervous system. Densely
Cell Systems 7, 137–145, A
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packed bacterial communities have also been shown to benefit

from coordinating their metabolic activities over long distances

(exceeding hundreds of cell lengths) to cope with nutrient

competition (Liu et al., 2015; Waters and Bassler, 2005). How-

ever, these bacterial communities face at least two major chal-

lenges to coordinate cellular actions at long distances. First, it

is unclear how bacterial communities can achieve reliable signal

propagation to desired target sites without specialized struc-

tures that direct the signals. Second, bacterial communities

exhibit significant cell-to-cell heterogeneity that can constitute

a key obstacle for long-range signal propagation (Li and You,

2013; Raj and van Oudenaarden, 2008; Symmons and Raj,

2016). For example, if only a fraction of cells contributes to signal

transmission, the resulting cell-to-cell heterogeneity could cause

the propagating signal to die out before reaching its desired

target (Alonso and B€ar, 2016; Cao et al., 1999; Steinberg et al.,

2006; Waxman, 2006). It is thus important to establish the rele-

vance of heterogeneity in bacterial communities in the context

of long-range signal transmission (Figure 1A).

The molecular mechanism that underlies signal propagation

from the interior of a Bacillus subtilis community toward its

edge is based on ion channel-mediated electrochemical

cell-to-cell signaling (Figure 1A). Specifically, electrochemical

signaling is initiated by cells in the biofilm interior when they

experience glutamate starvation during biofilm expansion. This

nutrient starvation leads to the opening of the metabolically

gated YugO potassium ion channel and subsequent release of

intracellular potassium. The resulting local increase in extracel-

lular potassium causes immediately adjacent cells to depolarize,

which interferes with their uptake of glutamate, a charged amino

acid. Consequently, the depolarized neighboring cell also expe-

riences glutamate limitation and opens its potassium ion chan-

nels, releasing its own potassium ions (Prindle et al., 2015).

This cell-to-cell relay mechanism gives rise to a chain reaction

that propagates the signal to the biofilm periphery. When the

electrochemical signal reaches the biofilm edge, it halts growth

of peripheral cells and thereby reduces their nutrient consump-

tion. This reduction in nutrient consumption allows higher

nutrient availability to the stressed cells in the biofilm interior.
ugust 22, 2018 ª 2018 The Authors. Published by Elsevier Inc. 137
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Figure 1. A Percolation Theory-Based Model for Electrochemical Signaling in Biofilms

(A) Biofilms undergo electrochemical signaling where the stressed biofilm interior periodically signals cells at the biofilm edge (arrows). Bottom cartoon depicts

heterogeneous signaling where some cells participate in signaling (cyan), becoming hyperpolarized, while some cells do not participate (black).

(B) Cell elongation rate is inversely correlated with membrane polarization, indicating a cost of electrical signaling activity to individual cells (N = 35 cells, error

bars, ±SEM).

(C) Percolation theory predicts the emergence of a connected path of firing cells (yellow outline) when the fraction of firing cells exceeds a critical value (left) but

not below this critical value (right).

(D) Image illustrating a method for counting the number of neighbors for a given cell, highlighted in white (left). Scale bar, 2 mm. Histogram (right) indicates the

modal number of nearest neighbors is 6 (N = 100 cells).

(E) Using the experimentally constrained nearest neighbor value of 6 (see also Figure S1), firing and non-firing cells are randomly positioned on a two-dimensional

lattice with probability f (0.5 in this image).

(F) Representative snapshots showing lattice simulations at various values of f (see also Figure S2).

(G) Onset of connectivity (percolation) is predicted when f exceeds 0.45. The f values for the representative images in (F) are indicated on the graph by their

respective colored circles.

(H) Model-generated cluster size distribution at the percolation threshold (f = 0.45), where clusters are distributed according to a power law.
When nutrient stress in the interior is alleviated, signaling ceases.

Now the biofilm resumes growth, which again results in a

renewed starvation of interior cells and initiation of the electro-

chemical signal. This signaling process thus increases the

overall fitness of the biofilm against chemical attack bymaintain-

ing a viable population of sheltered interior cells.

In addition to the population-level benefit, electrochemical

signaling carries a measurable cost to individual cells, in the

form of a reduction in growth rate (Figure 1B) (Liu et al., 2015).

This trade-off between single-cell-level cost and population-

level benefit suggests that it might be advantageous for the

biofilm that not all cells carry the burden of relaying the signal

for long-range transmission to succeed. But it is unclear what

fraction of signaling cells is needed and how these cells would

be organized in space to transmit the signal. Notably, signal

propagation through such inhomogeneous populations is not a

problem exclusive to biological systems, but a general question

that has been deeply explored in fields such as physics, chemis-

try, and materials science (B€ar et al., 1996; Sendiña-Nadal et al.,
138 Cell Systems 7, 137–145, August 22, 2018
1998; Steinbock et al., 1995). Percolation theory has emerged as

the simplest statistical physics approach that directly addresses

this problem. This theory has been commonly applied to study

signal propagation through various spatially extended heteroge-

neous systems (Bak et al., 1990; Zhou et al., 2015). In particular,

it describes the emergence of a connected path (connected

cluster of cells) that spans the entire size of a spatially extended

system, providing a conduit for signal transmission.

Here, we apply the framework of percolation theory to under-

stand how electrochemical signals are propagated across a

heterogeneous B. subtilis biofilm community. By incorporating

excitable dynamics into a percolation model, we predict the

ability of a biofilm to transmit a signal given different fractions

of cells participating in signaling, as well as different signaling

dynamics. We define cost and benefit for each set of signaling

parameters and predict a region in parameter space, determined

by the critical percolation point, where the signaling benefit

outweighs the associated cost. Integration of mathematical

predictions with quantitative experimental data from wild-type



and mutant biofilms suggests that wild-type biofilms operate

near this region. Our findings are likely to apply to other percola-

tion systems where the benefit exhibits a sharp sigmoidal shape

due to its population-level character, while the cost is associated

with the individual units that comprise the system and thus in-

creases linearly with the fraction of signaling units. We argue

that in such systems, the benefit will outweigh the cost near

the percolation threshold.

RESULTS

To address the problem of long-range signal transmission in

biofilms, we began by constructing a percolation-theory-based

model to investigate how a population of cells with heteroge-

neous electrical activity can reliably propagate signals (Fig-

ure 1A, STAR Methods). Percolation theory predicts the transi-

tion of a network from having only localized short-range

connections to the emergence of a fully connected path that

spans the entire system (Figure 1C). Specifically, for a defined

two-dimensional lattice, the onset of percolation occurs when

the fraction of randomly positioned firing cells, f, reaches a

critical value, fc (Stauffer and Aharony, 1994). At this point,

the system undergoes a sharp phase transition in its connectiv-

ity, giving rise to a connected cluster of firing cells with a size

close to that of the entire system. Below the critical f, too

few cells are firing to have sufficient adjacent cells to comprise

a fully connected cluster that can span the entire size of the

system. Therefore, the probability of having a fully connected

conduit for signal transmission across the system remains

zero below the critical fraction, but then suddenly jumps to 1

(complete connectivity) as f reaches the critical value. In other

words, only when f has reached the critical fraction of firing

cells can there be clusters of firing cells that are large enough

to span the system. This gives rise to the characteristic sudden

phase transitions associated with criticality (Figure 1G) (Stauffer

and Aharony, 1994).

Given the experimentally constrained size of the system and

a modal value of six neighbors for the biofilm cells (Figure 1D),

the model predicts an onset of signaling connectivity (percola-

tion) when the fraction of firing cells in the biofilm reaches 0.45

(Figures 1E–1G, see Figure S1C for lattices with different

numbers of nearest neighbors). At this critical fraction, a firing

cell is likely to have at least one immediately adjacent

neighbor that is also a firing cell. Consequently, the cluster

size distribution of firing cells will have a long tail. In other

words, there is always a finite probability of finding a very

large, system-spanning cluster of firing cells. Specifically, the-

ory predicts that near this critical percolation threshold, and

only near this point, the distribution of cluster sizes formed

by signaling cells follows a power-law decay with an exponent

of 2.05 (Stauffer and Aharony, 1994) (Figures 1H and S2).

While the critical value for the fraction of firing cells depends

on the specifics of the lattice, such as the number of neigh-

boring cells, the exponent is universal (Figure S1D). This

means that the exponent value is the same for any two-dimen-

sional lattice and thus a very stringent and general prediction

(Aharony, 1980).

To reiterate, percolation theory thus makes two precise pre-

dictions required for signal transmission to become possible in
bacterial communities: (1) the fraction of firing cells in the biofilm

should be at, or above, the critical percolation threshold of 0.45,

and (2) near the percolation threshold, the distribution of cluster

sizes formed by firing cells should follow a power-law decay with

a slope of 2.05.

To test these theoretical predictions, we determined the

spatial arrangement of signaling cells within biofilms. We

utilized a microfluidic platform to grow B. subtilis biofilm com-

munities (Liu et al., 2015) and image them with single-cell res-

olution (Figure S3). The microfluidic growth chamber con-

tained designated regions where the biofilm was constrained

in height to a two-dimensional monolayer. This allowed us to

accurately quantify the spatial organization and dynamics of

electrochemical signaling at the single-cell level. Furthermore,

the two-dimensional geometry allowed us to directly investi-

gate signal transmission in a geometry where the number of

neighboring cells is limited, compared with three-dimensional

regions of the biofilm where each cell has more than six neigh-

bors on average. The ability of the biofilm to transmit signals

even in a monolayer is crucial, since the leading edge of the

biofilm is predominantly a monolayer (Seminara et al., 2012)

and constitutes the destination for electrochemical signaling

(Figure 2A).

To measure membrane potential of individual bacteria within

biofilms during electrochemical signaling, we used the previ-

ously characterized fluorescent reporter thioflavin-T (ThT), which

acts as a Nernstian membrane potential indicator (Prindle et al.,

2015). Specifically, the higher themembrane potential of the cell,

the larger the amplitude of the fluorescent ThT signal. Single-cell

resolution measurements of the biofilm show that only some

cells exhibit pulses in electrical activity, while others do not

appear to participate in signaling (Figures 2A, 2B, and S4). Anal-

ysis of all cells reveals a bimodal distribution of membrane po-

tential amplitudes during signal propagation, with the fraction

of signaling cells being f = 0.43 ± 0.02 (Figure 2B, STAR

Methods), in agreement with the theoretically predicted percola-

tion threshold. We then measured the spatial distribution of

signaling (firing) cells and determined that they were clustered

in space (Figure 2C). Moreover, the distribution of cluster sizes

follows a power-law decay that extends across three decades

and has an exponent of approximately 2 (Figure 2D). Both the

fraction of firing cells and the distribution of firing cell cluster

sizes are thus consistent with percolation theory predictions.

These results suggest that the spatial organization of signaling

cells within the bacterial community may be organized near the

percolation threshold.

Signal transmission is an inherently dynamic process that un-

folds over time. In our system, the signal propagates from one

cell to the next, where each cell undergoes an excitable pulse

(firing) in its membrane potential. The amplitude of the pulse

must be sufficiently high to trigger a response in the neighboring

cell. It is also important that the cell does not spend excessive

time in the firing (and thus non-growing) state, as this would

result in unnecessary cost (Figure 1B). In its simplest form,

percolation theory is a statistical framework that does not ac-

count for such pulse durations and signaling dynamics of cells.

Therefore, we created a model that takes into account both

the spatial arrangement of firing cells and the single-cell

dynamics during signal transmission.
Cell Systems 7, 137–145, August 22, 2018 139
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Figure 2. Electrochemical Signaling within

Biofilms Is Heterogeneous at the Single-

Cell Level

(A) Membrane polarization is heterogeneous at the

single-cell level within signaling biofilms. Cyan

overlay indicates fluorescence of Thioflavin T (ThT),

a cationic membrane polarization reporter. Scale

bar, 10 mm (see also Figure S3).

(B) Histogram of individual cell ThT intensity

(N = 14,936 cells) during a signal pulse. The bimodal

shape of the histogram indicates that only a fraction

of firing cells (cyan) participate in signaling (0.43 ±

0.02, mean ± SEM).

(C) Firing cells are spatially clustered within bio-

films. Yellow outlines indicate cluster edges iden-

tified by image analysis based on ThT fluorescence.

Scale bar, 10 mm.

(D) Cluster sizes (N = 7,034 clusters) are distributed

according to a power-law decay across 3 decades

with an approximate exponent of 2. These proper-

ties indicate that the arrangement of firing cell

clusters within the biofilm can be described by

percolation theory.
We described the electrochemical signals in the biofilm with

the FitzHugh-Nagumo (FN) model of excitable dynamics (Fig-

ure 3A) (Tuckwell, 1988). This simple model, commonly used

for studying action potential dynamics in neurons, accounts

here for excitable dynamics in individual cells as well as for the

transmission of signals between neighboring cells (Figures 3B

and 3C). It contains three parameters: the first is the activation

or firing threshold, u0, which defines the amplitude that an

external signal has to exceed in order to trigger a response in

the form of a pulse. The second parameter is the recovery

time, t, which sets the pulse duration of a given response and

thus governs the signaling dynamics. The third parameter is

the ratio 3of excitation to cell-to-cell coupling strength, which

when sufficiently high supports pulse-coupled wave propaga-

tion (see STAR Methods) (Mirollo and Strogatz, 1990). To ac-

count for heterogeneity in signaling, different fractions of cells

can be assigned as firing cells by giving them a higher value

for t than the other cells (Figure 3D). We integrated the FNmodel

with percolation theory by evolving the dynamics on a two-

dimensional lattice of excitable cells. Simulations show that suc-

cessful signal propagation through the lattice of cells depends

on both the firing duration and the fraction of firing cells. Impor-

tantly, for the same dynamic parameters, a fraction of firing cells

near or above the percolation threshold enables successful

signal transmission, while a fraction below the threshold fails to

propagate the signal (Figures 3D and 3E).

To experimentally investigate how biofilm dynamics and

spatial structure jointly determine signal transmission and to

integrate our findings with mathematical predictions, we utilized

three gene-deletion strains that generate biofilms with altered

structure and dynamics (Figure 4A, STAR Methods). We first
140 Cell Systems 7, 137–145, August 22, 2018
focused on structural differences among

biofilms and began by investigating the

DtrkA strain, which lacks the TrkA gating

domain of the YugO potassium ion chan-

nel and is known to be deficient in electro-
chemical signaling (Humphries et al., 2017; Liu et al., 2017;

Prindle et al., 2015). Indeed, biofilms formed by the DtrkA strain

contain a low fraction of firing cells, 0.13 ± 0.04 (mean ± SEM),

compared with 0.43 ± 0.02 observed in wild-type biofilms (Fig-

ures 4B and 4D). We also utilized a strain that lacks the KtrA po-

tassium pump (DktrA) and generates biofilms with a fraction of

firing cells similar to wild-type biofilms (0.48 ± 0.11). In contrast,

deletion of SinR (DsinR), a transcription factor that represses

expression of the YugO ion channel (Lundberg et al., 2013), re-

sults in biofilms with a higher fraction of firing cells, 0.74 ± 0.04

(Figures 4B and 4D). Biofilms formed by these strains thus

contain structural differences as defined by differences in the

fraction of firing cells.

To characterize the signaling dynamics of each strain, we

tracked hundreds of individual cells within the wild-type and

genetically modified biofilms andmeasured their electrical activ-

ity during signal transmission (Figure 4C). We found that the

wild-type biofilm has the shortest pulse duration, followed by

DsinR and DtrkA biofilms (Figure 4E). The absence of the KtrA

potassium uptake pump extends the pulse duration, presumably

by delaying the recovery of intracellular potassium stores.

Notably, wild-type and DktrA biofilms have a similar fraction of

firing cells, despite their difference in average pulse durations.

In contrast, DtrkA and DsinR biofilms have similar pulse dura-

tions, even though DtrkA biofilms contain the lowest and DsinR

biofilms the highest fraction of firing cells (see Figure S5 for sin-

gle-cell traces from themodel). Together, these strains show that

the fraction of firing cells and average pulse durations can be

separately modulated, allowing us to experimentally explore

the phase space defined by the structure and dynamics of bio-

films during signal transmission (Figure 4F).
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Figure 3. An Excitable Model for Signal Propagation in Biofilms

(A) Model equation combines excitation (blue) and cell-cell communication (orange) to give rise to excitable propagation. The geometric factor gj is one-fourth at

the cell poles and one-half otherwise.

(B) A cartoon trace illustrates firing (blue-shading) followed by a refractory period (gray-shading) for a given excitable cell.

(C) Cell-cell communication (arrows) allows directional signal propagation from one cell to another. Refractory cells are gray and excited cells are blue.

(D) Example model snapshots depict complete signal propagation (direction indicated by arrow) in the regime above the percolation threshold (left, f = 0.5) and

incomplete signal propagation below the percolation threshold (right, f = 0.2). Both cases have the same values for the dynamic parameters, 3= 10, u0 = 0.01, t =

300 for firing cells or t = 5 for non-firing cells.

(E) Example amplitude profiles for the images shown in (D) (error bars indicate ± SEM, N = 3).
The different combinations of biofilm structure and dynamics

that are accessible through genetic perturbations provide an op-

portunity to investigate why the wild-type cell-to-cell heteroge-

neity is organized near the critical percolation threshold. Moti-

vated by the notion that biological processes carry not only a

benefit, but also a cost, we asked whether the observed spatial

organization of wild-type biofilms could be explained by the bal-

ance between the benefit and cost of signal transmission. The

benefit is defined by the ability to successfully transmit the signal

within the biofilm, since such signaling has been previously

shown to increase the population-level fitness against chemical

attack (Liu et al., 2015). Therefore, we can experimentally define

the population-level benefit of signaling based on the fidelity of

signal transmission. Specifically, we measure the relative frac-

tion of cells that relay the signal at the two most distant locations

within the field of view of our experimental set up (approximately

25 cell lengths in Figure 5B). We find that the wild-type and

mutant biofilms that contain a fraction of firing cells that are

near or above the critical percolation threshold can successfully

transmit the signal without a decay in its amplitude (Figures 5A

and 5B). In contrast, theDtrkA strain, which has a fraction of firing

cells well below the percolation threshold (Figures 4D and 4F),

fails to transmit the signal (Figures 5A and 5B).We can now relate

this experimentally determined benefit to the mathematical

model based on the fidelity of signal transmission. In particular,

the model predicts that as a function of f, the benefit will sharply

rise in a sigmoidal manner (Figure 5C). This sudden rise in the

population-level benefit is due to the sudden transition in con-

nectivity at the percolation threshold that enables signal trans-

mission through the system. Beyond the percolation threshold,
the benefit is predicted to saturate, since a fully connected

conduit for signaling has already been formed, and a further in-

crease in the fraction of firing cells does not qualitatively alter

signal transmission. Our experimental data are consistent with

the mathematically predicted benefit function (Figure 5C).

On the other hand, community-level benefit is also associ-

ated with a single-cell-level cost. Specifically, firing cells

incur a metabolic burden during their electrical activity, as

illustrated by the experimentally observed reduction in their

cell elongation rate (Figure 1B). Therefore, we define popula-

tion-level cost as the fraction of firing cells multiplied by their

mean signaling duration (Figure 5D). The biofilm incurs

greater cost with an increasing number of firing cells, or

longer firing durations per cell. Consequently, the cost func-

tion increases gradually with the fraction of firing cells. While

both the cost and benefit increase as a function of the frac-

tion of firing cells, the smooth rise of the cost function and

the sharp sigmoidal shape of the benefit function imply an

intriguing cost-benefit relationship (Figures 5C and 5D).

We find that the intersection of a nonlinear benefit function and

a linear cost function gives rise to a non-monotonic benefit-to-

cost relationship. Specifically, the cost rises at a constant rate,

while the benefit jumps at the percolation threshold and then sat-

urates (Figures 6A and 6B). This suggests that the benefit-to-

cost ratio would be highest near the percolation threshold.

Indeed, when we plot the benefit-to-cost ratio from the model

as a function of the fraction of firing cells, we find a well-defined

peak near the percolation threshold (Figures 6C and 6D). The

result does not depend on the specific way in which benefit

and cost are compared: subtracting the cost from the benefit,
Cell Systems 7, 137–145, August 22, 2018 141
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Figure 4. Experimental Tuning of Firing Cell Fraction and Pulse Duration with Mutant Biofilms

(A) A series of cartoons illustrates the function of genes deleted in the mutant strains.

(B) Representative images from time points of peak signaling activity depicting the fraction of firing cells for each strain (cyan ThT fluorescence). Scale bar, 10 mm.

(C) Heatmaps depict single-cell ThT trajectories (N = 100) for all strains. Each column is one cell trace, with time progressing downward. The color scale varies

across strains due to baseline fluorescence differences among experiments (see also Figure S5).

(D) Mutant strains exhibit decreased (DtrkA, 0.13 ± 0.04, n = 7, mean ± SEM) or increased (DsinR, 0.74 ± 0.04, n = 4 and DktrA 0.48 ± 0.11, n = 4) fraction of firing

cells relative to wild-type (0.43 ± 0.02, n = 12). Wild-type is near, but slightly below, the percolation threshold, fc = 0.45. The DtrkA strain (purple), which lacks the

gating domain of the potassium channel YugO, is expected to exhibit reduced signaling activity. TheDsinRmutant (orange) lacks a transcription factor (SinR) that

represses expression of YugO, resulting in higher signaling activity.

(E) Pulse duration measurements, where pulse duration is defined as the amount of time membrane polarization remains above baseline level. All mutant strains

(DtrkA 30.6 ± 2.6, 124 cells, three biofilms, andDktrA 45.7 ± 2.4, 204 cells, three biofilms, andDsinR 34.1 ± 2.0, 165 cells, three biofilms, mean ± SEM) have larger

pulse durations than wild-type (18.1 ± 1.0, 383 cells, three biofilms).

(F) A phase plot of pulse duration and fraction firing for each strain.DtrkA lies below the percolation threshold (dotted line) andDsinR above, both with longer pulse

duration than wild-type. Wild-type and DktrA lie near the threshold, but with different pulse times (error bars, ± SEM).
for instance, also yields a peak near the percolation threshold

(Figure S6). The experimentally determined values place the

wild-type biofilm near this region defined by the peak, while

themutant biofilms are located away from this region (Figure 6D).

These results indicate that the spatial organization of heteroge-

neity in the wild-type biofilm promotes efficient signal transmis-

sion by residing near the percolation threshold.

We note that given a sharp rise in the benefit due to the critical

phase transition, the benefit will outweigh the cost near the

percolation threshold for a broad range of slopes of the cost

function (Figures 6C and 6D inset). We also note that linearity

is not required, for as long as the cost function increases gradu-

ally, the benefit-to-cost function will always be dominated by the

jump in the benefit.

DISCUSSION

It has been suggested that biological systems across different

scales exhibit properties consistent with critical phase transi-
142 Cell Systems 7, 137–145, August 22, 2018
tions. This claim is often justified by the observation of scale-

free behaviors, such as power-law dependencies (Bialek

et al., 2014; Dai et al., 2013; Steiner et al., 2016). However,

two common concerns are that many biological systems lack

an underlying theoretical justification of a critical phase

transition, and that the biological purpose of operating near a

phase transition is unclear (Mora and Bialek, 2011). Here we

demonstrate that the spatial organization of a bacterial biofilm

is consistent with percolation theory, which is well-known to

exhibit a critical phase transition. Specifically, we observe a

power law that arises at the predicted value (percolation

threshold) and with the predicted exponent. Furthermore, we

offer a biological rationale for why the system would be at

criticality, by showing that the benefit outweighs the cost

near the critical point. The scale-free nature of the critical point

also suggests that efficient signal transmission is independent

of the size of the biofilm. In other words, signals can be effi-

ciently transmitted as the biofilm grows, without the biofilm

having to adjust the fraction of firing cells. It is thus intriguing
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Figure 5. Signal Transmission Occurs near

or above the Percolation Threshold

(A) Phase images with overlaid ThT intensity (cyan)

during peak signaling show steady signal propa-

gation in wild-type (top) and spatial signal decay in

DtrkA (bottom). Scale bar, 10 mm.

(B) Transmission amplitude measurements show

that wild-type (n = 7), DktrA (n = 4), and DsinR

(n = 4) propagate the signal at a constant ampli-

tude, while DtrkA (n = 5) does not. Transmission

amplitude is defined as the fraction of firing

cells at a given position divided by the firing

fraction at the beginning of the field of view (error

bars, ± SEM).

(C) Collective benefit of signaling is defined as the

ratio of transmission amplitudes at the biofilm

edge and at the beginning of the field of view.

Experimental data are shown by points (error

bars, ± SEM). The model output for wild-type

parameters (black curve) illustrates the nonlinear

nature of collective benefit.

(D) Collective cost of signaling is defined as the

product of the firing cell fraction, f, and mean

pulse time. Experimental data are shown as

points (error bars, ± SEM). Lines represent the

cost that would be incurred for each strain given

its mean pulse time.
to speculate that a cost-benefit negotiation may be an orga-

nizing principle that drives the biofilm structure to the critical

percolation threshold. Our findings suggest that the cost and
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Figure 6. Cost-Benefit Negotiation in Signal

Transmission

(A) The benefit (transmission efficiency) is plotted

for different dynamic parameters as a function of f

and resulting pulse time (green color scale). When

plotted as a function of f only, the curves line up

with benefit rising near the threshold (inset).

(B) The cost function is plotted for the corre-

sponding benefit curves from (A).

(C) Benefit/cost ratio is plotted as a function of f for

the different model curves in (A) and (B), illustrating

that, no matter the dynamic model parameters,

benefit/cost ratio has a peak near the percolation

threshold. This comes from the fact that benefit is

highly nonlinear inf, while cost increases smoothly

for any set of dynamic parameters (inset).

(D) Measured benefit/cost ratio is plotted for each

strain (dots, error bars indicate ± SEM), along with

the model output given wild-type parameters

(curve). The ratio exhibits a peak due to the linear

cost but highly nonlinear benefit, with wild-type

near the maximum (see also Figure S6). Inset plot

overlays cost and benefit on separate y axes.
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criticality may also describe the spatiotemporal organization of

diverse biological systems and provide a conceptual frame-

work to uncover the functional pressures that drive these sys-

tems to phase transition points.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

B. subtilis NCIB 3610 Bacillus Genetic Stock Center,

(Irnov and Winkler, 2010)

BGSCID: 3A1

sacA::PcitZ-yfp (CmR) This study N/A

trkA::NeoR (Prindle et al., 2015) N/A

sinR::NeoR (Asally et al., 2012) N/A

ktrA::ErmR (Humphries et al., 2017) N/A

Software and Algorithms

Custom MATLAB and Fiji scripts This study https://www.mathworks.com/products/

matlab.html and https://fiji.sc/

mTrackJ (Meijering et al., 2012) https://imagescience.org/meijering/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, G€urol M.

S€uel (gsuel@ucsd.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Table of Strains

software/mtrackj/
Strain Genotype Source

Wild type B. subtilis NCIB 3610 (Irnov and Winkler, 2010)

PcitZ-YFP sacA::PcitZ-yfp (CmR) this study

DtrkA trkA::NeoR (Prindle et al., 2015)

DsinR sinR::NeoR (Asally et al., 2012)

DktrA ktrA::ErmR (Humphries et al., 2017)
Bacillus subtilis Strains
We conducted all experiments with B. subtilis NCIB 3610. Wild-type 3610 was a gift from W. Winkler (University of Maryland) (Irnov

and Winkler, 2010). All other strains were derived from it and verified by sequencing.

Biofilm Growth Conditions
We grew biofilms in MSgg medium containing 5 mM potassium phosphate buffer (pH 7.0), 100 mM MOPS buffer (pH 7.0,

adjusted using NaOH), 2 mM MgCl2, 700 mM CaCl2, 50 mM MnCl2, 100 mM FeCl3, 1 mM ZnCl2, 2 mM thiamine HCl, 2 mM sodium

citrate, 0.5% (v/v) glycerol and 0.4% (w/v) monosodium glutamate. Media were made from stock solutions immediately before ex-

periments, and the stock solution of glutamate made fresh every two days.

Microfluidics and Experimental Conditions
24 hr before experiments, we streaked strains from -80 C glycerol stocks onto LB agar plates and grew overnight at 37 C. The day of

experiments, we inoculated single colonies from LB plates into 5 mL of liquid LB media and grew in a 37 C shaker for �2.5-3 hr. We

centrifuged LB-grown cultures at 4800 rpm for 2 min and resuspended cell pellets in MSgg medium. We then immediately loaded

cells into a Y04D microfluidic plate using the CellASIC ONIX microfluidic system (EMD Millipore) (Liu et al., 2015). After loading,

we grew cells in the microfluidics at 37 C and 0.5 psi (�8 mm/s) flow for �2 hrs before changing temperature to 30 C and growing

overnight under 1.5 psi flow (�24 mm/s). After 12 hr of growth in plain MSgg, ThT dye was flowed in at a concentration of 10 mM.

Experiments were conducted under these conditions.
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METHOD DETAILS

Percolation Theory
To describe the connectivity and clustering statistics of firing cells in the biofilm, we simulate cells on a regular two-dimensional lat-

tice. Because cells in the experimental biofilms have a modal value of six neighbors (Figure 1D), we use a triangular lattice, in which

cells have six nearest neighbors to which they connect forming triangles (Stauffer and Aharony, 1994). Other lattices that would be

good approximations of the biofilm predict similar results to those of the triangular lattice (Figure S1). Percolation theory describes the

statistics of lattices in which a fraction f of cells are firing. Firing cells are positioned uniform randomly within the lattice.

Percolation theory predicts that for sufficiently large lattices there is a critical threshold fc at which several key features occur

(Stauffer and Aharony, 1994). First, the probability of a connected path (a contiguous path of firing cells that spans from one side

of the lattice to the other) transitions from 0 to 1 at fc (Figure 1G). Second, at fc the distribution of cluster sizes becomes a power

law, p(n)f n-a (Figure 1H), where a cluster is defined as a group of contiguous firing cells, and n is the number of cells in the cluster.

For two-dimensional infinite lattices, the exponent is a= 187/91z 2.05 (Stauffer and Aharony, 1994). Below fc the distribution falls off

exponentially (Figure S2), and above fc the distribution acquires weight near the lattice size due to the emergence of a giant cluster

(Figure S2).

In all simulations we use a lattice size that corresponds to the approximate observation window in the experiments, L = 35 cell

heights by W = 200 cell widths. Connectivity is determined along the shorter direction L, since this is the direction of signal propa-

gation in the biofilm. The asymmetric geometry (LsW) is responsible for the deviation of the percolation threshold (fc = 0.45) seen in

themain figures from the predicted value for a symmetric triangular lattice (fc = 0.5) (Stauffer and Aharony, 1994). Figures 1G, 1H, and

S2 were generated using 2000 realizations of the lattice.

Dynamical Model
To model the single-cell dynamics of electrical pulses in the biofilm, we utilized the FitzHugh-Nagumo (FN) model (Figure 3A) (Tuck-

well, 1988). The FN model is a minimal model of excitable dynamics and is commonly utilized for studying action potential dynamics

in neurons. Here we use it to model the bucket-brigademechanism of effective electrical activation of neighboring cells reported pre-

viously (Prindle et al., 2015). Specifically, we use a discretized Laplacian term to account for the cell-cell communication (Figures 3A

and 3C). In general, the parameters of this phenomenological model do not have a precise mechanistic interpretation, but rather are

calibrated from the experiments as described below.

In all dynamical simulations, cells in the first row are initialized with u = 1 to trigger the excitable wave; all other cells are initialized

with u = 0. We use a lattice of L’ = 100 rows byW = 200 and record from a window of L = 35 byW = 200 that is positioned just after the

first row. Choosing L’ > L avoids boundary effects at the last row.We use an absorbing boundary at the last row and reflecting bound-

aries on the other three sides. To evolve the dynamics, we discretize the FNmodel in time using the fourth-order Runge-Kuttamethod

with time stepDt = 0.02. For the cell-cell couplingwe use gj = 1/2 and 1/4 (Figure 3A) for the two short-edge and four long-edge neigh-

bors, respectively, corresponding to a rectangular cell with a 2-to-1 aspect ratio on a triangular lattice.

A fraction f of cells are firing and are positioned randomly in accordance with percolation theory as described above. All firing cells

have the same FN parameters, given below. Non-firing cells have the same parameters as firing cells, except that we reduce the re-

covery time t by a factor of 60, which we find strongly reduces the firing propensity of these cells (Figures 3D and 3E).

Model Calibration
We calibrate the parameters of the model (Figure 3A) from the wild type (WT) data in the following way. The fraction of firing cells

f = 0.43 is obtained directly from the experiments (Figure 4D). The excitation strength 3must be larger than 1 because otherwise

diffusion outpaces excitation and the wave does not propagate; therefore we set 3= 10 (note that because the model is phenome-

nological, the diffusion we describe here is effective and does not correspond to the diffusion of, say, the potassium ions between

cells). The threshold u0 must be significantly less than 1 because otherwise signal from a neighboring cell is insufficient to trigger an

excitation and the wave does not propagate; we find that u0 = 0.02 suffices (Figure 3D). The recovery time of firing cells t = 300 is set

such that the mean wavelength over 10 simulations is equal to the approximate experimental wavelength of 35 cells. Finally, we

convert from dimensionless time t to minutes by equating the mean pulse duration in the simulations to the experimental value (Fig-

ure 4E). Pulse duration is averaged over all firing cells and defined as the time over which u > 0.6. See Figure S5 for single-cell time

traces from model biofilms with parameters corresponding to each experimental strain.

Model Validation
We validate the model using one of the mutant strains, DsinR. This strain has a higher fraction f = 0.74 of firing cells than WT. We

anticipate that because structure and dynamics are connected in the integrated model, changing the fraction of firing cells will

also change the mean pulse duration. We test this expectation in the model, setting f = 0.74 and keeping all other parameters

the same as WT. We observe in the simulations that the mean pulse duration rises from 18.1 min (WT) to 33.2 min (DsinR). In the ex-

periments, we measure the mean pulse duration for DsinR to be 34.1 min, which agrees very closely with the value from the simu-

lations. This validates the model and demonstrates that structure and dynamics are tightly connected in the integrated model.
Cell Systems 7, 137–145.e1–e3, August 22, 2018 e2



Cost-Benefit Curves
To determine the cost and benefit curves in Figures 5 and 6, we use the following procedure. In Figure 5C, we vary fwhile keeping all

other parameters as calibrated above. For each f value, we calculate the benefit as the average over 100 simulations of the ratio

of the number of firing cells in the final five rows to that in the initial five rows. In Figure 6D, we calculate the cost as the average

over 100 simulations of the product of the fraction of firing cells and the mean pulse duration. In Figures 6A–C, for each f value,

we vary t in the range 5 to 1000 and measure the mean duration and benefit-to-cost ratio over 30 simulations for each t value.

Then we use linear interpolation to find the benefit-to-cost ratio corresponding to a particular duration. This produces curves of

benefit-to-cost ratio vs. f at fixed duration. Finally, we smooth these curves using a Gaussian filter of width 0.01, producing the result

in Figure 6C.

QUANTIFICATION AND STATISTICAL ANALYSIS

Time-Lapse Microscopy
We recorded phase-contrast and fluorescence images of biofilms at regular time intervals (between 3 and 10 min across

experiments). For most experiments, we recorded phase, ThT fluorescence (for electrical signaling), and YFP fluorescence (for

other analysis, see below). We used an Olympus IX83 inverted epifluorescence microscope with autofocus and a 40X, 0.6 NA or

100X, 1.4 NA objective, depending on the experiment. For each image, we used the minimum fluorescence exposure time that

yielded good signal. For ThT images, exposure time was 17 ms and for YFP, exposure time was 150 ms.

Image Analysis
In order to segment single cells in each field of view, we took both ThT and YFP images with a 40X, 0.6 NA objective at the peak of

each signal pulse as determined by the highest average ThT intensity of each field of view during signaling. Each field of view con-

tained roughly 8000 bacteria. Cells expressed YFP from the citZ promoter, which gave a strong constitutive signal in each cell. From

YFP images, we created thresholded binary images, from which we could identify the position and outline of each cell. We then

thresholded ThT images at a fluorescence intensity value directly between the two peak peaks of the bimodal ThT intensity distribu-

tion (Figure 2B) to create a binary image with contiguous high ThT regions corresponding to clusters of firing cells (Figure 2C). Cluster

sizes were measured by superimposing the high ThT cluster outlines on the binarized YFP image and counting the number of cells

with amajority of their area inside each high ThT contour. The fraction of firing cells, f, was computed by dividing the number of firing

cells (high ThT) by the total number of cells in the field of view. All processing was performed with custom Fiji macros.

Dynamic Analysis
Pulse durations come from single-cell tracking measurements, where a cell was considered to be pulsing if its ThT level was above

the threshold described above. Tracking was performed with the mTrackJ Fiji plugin by manually clicking on cells in each frame of a

time lapsemovie (Meijering et al., 2012). Tomeasure single cell cost (Figure 1B) wemeasured elongation rate and ThT signal of single

cells during a signal pulse with custom software written in MATLAB.

DATA AND SOFTWARE AVAILABILITY

All data and software used in this manuscript are available upon request, for contact information see section ‘Contact for Reagent

and Resource Sharing’.

ADDITIONAL RESOURCES

All relevant resources are contained in the previous STAR Methods sections.
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Figure S1 

 
 
Figure S1. Disordered lattices have the same percolation properties as triangular 
lattices. Related to Figure 1. (A) A disordered lattice may be created by starting with a 
triangular lattice and adding random noise (σ) to the height of each cell. (B) This yields a 
model biofilm with a distribution of nearest neighbor numbers, as shown in this 
histogram from a σ = 0.4 biofilm. Some cells have more than 6 nearest neighbors, some 
fewer. (C) These perturbations do not affect the percolation threshold, as shown in this 
connectivity plot near the threshold value of ϕc = 0.45. σ = 0 represents the triangular 
lattice used in the paper. All curves overlap. (D) For different σ values, the cluster size 
distribution is not significantly changed near the percolation threshold, as shown in this 
cluster size distribution plot for different σ values.  
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Figure S2 

 
 
Figure S2. Cluster size distribution in model biofilms changes with fraction of 
firing cells. Related to Figure 1. Model-generated cluster size distributions for values 
of ϕ depicted in Figure 1F, G. Only when ϕ = ϕc, are clusters distributed according to a 
power-law (black circles). Above the percolation threshold (magenta circles), a giant 
cluster develops near the system size.   
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Figure S3 

 
 
Figure S3. Microfluidic system for single molecule measurements of biofilms. 
Related to Figure 2. (A) Schematic of microfluidic device used in these experiments. 
Cells are seeded under a strip of PDMS (bottom) and allowed to grow into a biofilm as 
media flow is controlled. During biofilm growth, the edge region under the PDMS strip is 
confined to single cell thickness (e.g. blue rectangle), enabling imaging at single-cell 
resolution, as shown in the phase image in (B), Scale bar, 20 μm. 
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Figure S4 

 
 
Figure S4. Cells generally do not switch signaling state between pulses. Related 
to Figure 2. A heatmap of 320 single cell ThT traces from two consecutive pulses in a 
wild-type biofilm. Each column is a ThT trace from one cell with time increasing along 
the vertical axis. The traces are organized with hierarchical clustering. The heatmap 
illustrates that the cells maintain their firing state. Cells that fire on the first pulse have a 
much higher probability of firing on the second pulse than those that do not and vice 
versa. 
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Figure S5 

 
 
Figure S5. The model predicts heterogeneous single-cell time traces. Related to 
Figure 3 and Figure 4. Heatmaps displaying time traces from the model for 100 
randomly chosen cells from biofilms with parameters matched to those of the four 
experimental strains (see STAR Methods for details). For each heatmap, a single 
column is that trace from one cell and time moves from top to bottom. The time point of 
excitation for each heatmap is marked with an asterisk. Compare to the experimental 
heatmaps from Figure 4C of the main text. 
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Figure S6 

 
 
Figure S6. Benefit minus cost yields a peak near the percolation threshold. 
Related to Figure 6. Benefit minus cost is plotted as a function of fraction of firing cells 
for experimental data (colored points) and the model with wild-type parameter values 
(black line). Because benefit is a number between 0 and 1 and cost unbounded, we 
normalize cost by dividing it by the highest pulse time value measured. The curve bends 
down at higher ϕ values because the pulse time from the model slightly increases with ϕ 
for the same τ value (see STAR Methods). As with benefit divided by cost, this function 
exhibits a peak near the percolation threshold. 
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